# Euler Problem 30

Surprisingly there are only three numbers that can be written as the sum of fourth powers of their digits:

1634 = 1 4 + 6 4 + 3 4 + 4 4 8208 = 8 4 + 2 4 + 0 4 + 8 4 9474 = 9 4 + 4 4 + 7 4 + 4 4 As 1 = 1 4 is not a sum it is not included.

The sum of these numbers is 1634 + 8208 + 9474 = 19316.

Find the sum of all the numbers that can be written as the sum of fifth powers of their digits.

﻿On a roll.

import java.util.*;

public class Euler30
{
public static void main(String[] args)
{
System.out.print(“Problem 30:\n”);
Euler30 e = new Euler30();
System.out.print(“Answer = ” + e.Problem()+ “\n”);
}
public String Problem ()
{
ArrayList<Double> List = new ArrayList<Double>();
double v = 0, p = 0;
double sum = -1;
for (int a1 = 0; a1 <= 9; a1++)
{
for (int a = 0; a <= 9; a++)
{
for (int b = 0; b <= 9; b++)
{
for (int c = 0; c <= 9; c++)
{
for (int d = 0; d <= 9; d++)
{
for (int e = 0; e <= 9; e++)
{
v = (a1*100000)+(a*10000)+(b*1000)+(c*100)+(d*10)+e;
p = Math.pow(a1,5)+Math.pow(a,5)+Math.pow(b,5)+Math.pow(c,5)+Math.pow(d,5)+Math.pow(e,5);
if (v == p)