# Euler Problem 68

I finally got it, after months of twisting in the wind. Just used a simple permutations routine and created a custom data map to test each set.Looks like I’m switching back to Python. I’ve decided to ditch Squarespace too, to save a few bucks. I can accomplish pretty much the same here on WordPress.

```#Euler68
def permutate(seq):
if not seq:
return [seq]
else:
temp = []
for k in range(len(seq)):
part = seq[:k] + seq[k+1:]
for m in permutate(part):
temp.append(seq[k:k+1] + m)
return temp
print "Calculating Permutations of 1234567890"
list = permutate("1234567890")
print "Done. Size:" + str(len(list))
print "Calculating Maximum Set"
max = 0L
for set in list:
n = []
n.append(int(set[5]))
n.append(int(set[3]))
n.append(int(set[2]))
n.append(int(set[6]))
n.append(int(set[2]))
n.append(int(set[1]))
n.append(int(set[7]))
n.append(int(set[1]))
n.append(int(set[0]))
n.append(int(set[8]))
n.append(int(set[0]))
n.append(int(set[4]))
n.append(int(set[9]))
n.append(int(set[4]))
n.append(int(set[3]))
for i in range(0,15):
if n[i] == 0:
n[i] = 10
if n[3] > n[0]:
if n[6] > n[0]:
if n[9] > n[0]:
if n[12] > n[0]:
if n[0]+n[1]+n[2] == n[3]+n[4]+n[5]:
if n[0]+n[1]+n[2] == n[6]+n[7]+n[8]:
if n[0]+n[1]+n[2] == n[9]+n[10]+n[11]:
if n[0]+n[1]+n[2] == n[12]+n[13]+n[14]:
S = ""
for i in range(0,15):
S = S + str(n[i])
if len(S) == 16:
if long(S) > max:
max = long(S)
print "Total:"+str(x)+" Set:"+S+" Max:"+str(max)